Prerequisites
|
-
|
Language of Instruction
|
Turkish
|
Responsible
|
Assoc. Dr. Gonca DURMAZ GÜNGÖR
|
Instructors
|
-
|
Assistants
|
Assoc. Dr. Gonca DURMAZ GÜNGÖR, Assist. Dr. Mustafa ASLANTAŞ
|
Resources
|
K1. Başkan, T., Bizim, O., Cangül İ.N. 2006, Metrik Uzaylar ve Genel Topolojiye Giriş, Nobel Akademik Yayıncılık, Ankara.
K2. Koçak, M., 2015, Genel Topolojiye Giriş ve Problem Çözümleri, Nisan Kitapevi, ISBN: 9789756428825.
|
Supplementary Book
|
K3. Metric Spaces by P. K. Jain, K. Ahmad (ISBN: 9781842651704).
K4. Kılıç, S. A., Erdem M., 1999, Metrik Uzaylar ve Topoloji, Vipaş Yayınları, İstanbul.
K5. Soykan, Y., 2012, Metrik Uzaylar ve Topolojisi, Nobel Akademik Yayıncılık, Ankara.
|
Goals
|
To learn the concepts of continuity and completeness in metric spaces and understands the relationship with other spaces. Learns detailed information about compact topological spaces and compact metric spaces and connected topological spaces and connected metric spaces.
|
Content
|
Continuity in metric spaces, homeomorphisms, uniform continuity in metric spaces, compact spaces, compactness in metric spaces, completeness and compactness in metric space, totally bounded metric space, sequential compactness and countable compactness in metric space, connected spaces, connectedness and continuous functions, connectivity of product spaces, locally connected spaces, path connected spaces, path connected subsets and path components
|