CANKIRI KARATEKIN UNIVERSITY Bologna Information System


  • Course Information
  • Course Title Code Semester Laboratory+Practice (Hour) Pool Type ECTS
    General Topology II MAT320 FALL-SPRING 3+0 E 4
    Learning Outcomes
    1-Analyzes the concept of continuity in metric spaces.
    2-Comments the concept of compactness and compactness in metric spaces.
    3-Identifies the concept of connectedness.
    Prerequisites -
    Language of Instruction Turkish
    Responsible Assoc. Dr. Gonca DURMAZ GÜNGÖR
    Instructors -
    Assistants Assoc. Dr. Gonca DURMAZ GÜNGÖR, Assist. Dr. Mustafa ASLANTAŞ
    Resources K1. Başkan, T., Bizim, O., Cangül İ.N. 2006, Metrik Uzaylar ve Genel Topolojiye Giriş, Nobel Akademik Yayıncılık, Ankara. K2. Koçak, M., 2015, Genel Topolojiye Giriş ve Problem Çözümleri, Nisan Kitapevi, ISBN: 9789756428825.
    Supplementary Book K3. Metric Spaces by P. K. Jain, K. Ahmad (ISBN: 9781842651704). K4. Kılıç, S. A., Erdem M., 1999, Metrik Uzaylar ve Topoloji, Vipaş Yayınları, İstanbul. K5. Soykan, Y., 2012, Metrik Uzaylar ve Topolojisi, Nobel Akademik Yayıncılık, Ankara.
    Goals To learn the concepts of continuity and completeness in metric spaces and understands the relationship with other spaces. Learns detailed information about compact topological spaces and compact metric spaces and connected topological spaces and connected metric spaces.
    Content Continuity in metric spaces, homeomorphisms, uniform continuity in metric spaces, compact spaces, compactness in metric spaces, completeness and compactness in metric space, totally bounded metric space, sequential compactness and countable compactness in metric space, connected spaces, connectedness and continuous functions, connectivity of product spaces, locally connected spaces, path connected spaces, path connected subsets and path components
    Çankırı Karatekin Üniversitesi  Bilgi İşlem Daire Başkanlığı  @   2017 - Webmaster