CANKIRI KARATEKIN UNIVERSITY Bologna Information System


  • Course Information
  • Course Title Code Semester Laboratory+Practice (Hour) Pool Type ECTS
    Advanced Data Mining PEY522 FALL-SPRING 2+2 University E 6
    Learning Outcomes
    1-Defines the concept of mining.
    2-Defines data mining processes, models, and techniques.
    3-Defines prediction models.
    Prerequisites None
    Language of Instruction Turkish
    Responsible Assoc. Prof. Gülay KARAHAN
    Instructors

    1-)Doçent Dr. Gülay Karahan

    Assistants -
    Resources R1. Argüden, Y., Erşahin, B. (2008). Veri Madenciliği. ARGE Danışmanlık Yayınları.ISBN:978-975-93641-9-9. R2. Mailund, T. (2017). Beginning Data Science in R: Data Analysis, Visualization, and Modelling for the Data Scientist. Library of Congress Control Number: 2017934529. ISBN-13 (pbk): 978-1-4842-2670-4. R3. Şeker, S.E. (2014). Weka ile veri madenciliği. Bilgisayar kavramları yayınları
    Supplementary Book -
    Goals Provide competence to students in knowledge of data mining, data and information, information discovery in databases, traditional statistical methods, artificial neural networks, decision trees, Bayes theorem, applications and advanced techniques
    Content Data mining functions include decision trees, bayes, regression, clustering, using R packets, creating graphics, data mining applications with R and WEKA.
    Çankırı Karatekin Üniversitesi  Bilgi İşlem Daire Başkanlığı  @   2017 - Webmaster