Yardımcı Kitap
|
YK1) David Cox, John Little, Donal O`Shea, (2015), Ideals, Varieties, and Algorithms, (4th Edition), Springer-Verlag, New York.
YK2) Karen E. Smith, Lauri Kahanpää, Pekka Kekäläinen, William Traves, (2010), An Invitation To Algebraic Geometry, Springer-Verlag, New York.
YK3) Miles Reid, (1992), Undergraduate Algebraic Geometry,, Cambridge University Press, London.
|
Dersin İçeriği
|
Cebir ve geometri arasındaki bağlantı, polinomlar ve afin uzay; Afin varyeteler; Afin varyetelerin parametrizasyonları, bir afin varyetenin ideali; k cismi üzerindeki n-değişkenli polinom halkasının tek terimlilerinin sıralanması problemi ve bu halka üzerinde bir bölme algoritması; Monom idealler ve Dickson lemması, Hilbert baz teoremi; Groebner bazların özellikleri; Bir idealin Groebner bazının bulunması problemi, Buchberger algoritması, Groebner bazının ilk uygulamaları; Eliminasyon ve genişletme teoremleri, eliminasyonun geometrisi ve kapanış teoremi; Parametrik olarak verilmiş bir varyeteyi tanımlayan eşitliklerin bulunması problemi (implicitization); Bir eğrinin tekil noktaları, bir eğriler ailesinin zarfı; İndirgenemeyen polinomlar, tek çarpanlama ve bileşkeler (resultants); Bileşkelerin kullanımıyla genişletme teoreminin ispatı; Hilbert Nullstellensatz, radikal idealler ve ideal-varyete eşleşmesi; İdeallerin toplamı, çarpımı, kesişimi, afin uzaydaki bir kümenin Zariski kapanışı, ideallerin bölümü; İndirgenemeyen varyeteler ve asal idealler, bir varyetenin indirgenemez varyetelere ayrışımı.
|