Kaynaklar
|
1. Lillesand, T.M., Kiefer, R.W., ve Chipman, J.W., 2004. Remote Sensing and Image Interpretation. 5th ed. New York: John Wiley & Sons, Inc.
2. Günlü, A., Ercanlı İ., Başkent, E.Z., ve Çakır G., 2014. Estimating Aboveground Biomass using Landsat TM Imagery: A Case Study of Anatolian Crimean Pine Forests in Turkey. Ann. For. Res. 57(2): 289-298.
3. Günlü, A., ve Ercanlı, İ., 2020. Artificial Neural Network Models by Alos Palsar Data for Aboveground Stand Carbon Predictions of Pure Beech Stands: A Case Study From Northern of Turkey. https://doi.org/10.1080/10106049.2018.1499817.
5. Günlü, A., Ercanlı İ., Şenyurt, M., ve Keleş, S. 2020. Estimation of Some Stand Parameters from textural features from WorldView-2 Satellite Image using the Artificial Neural Network and Multiple Regression Methods: A Case Study from Turkey. https://doi.org/10.1080/10106049.2019.1629644
5. Lucas, R.M., Mitchell, A.L., ve Armston, J., 2015. Measurement of Forest Above-Ground Biomass using Activeand Passive Remote Sensing at Large (Subnational to Global)Scales. Curr Forestry Rep (2015) 1:162?177.
6. Sakıcı, O.E., ve Günlü, A. 2018. Artificial Intelligence Applications for Predicting Some Stand Attributes using Landsat 8 OLI Satellite Data: A Case Study from Turkey. Applıed Ecology and Envıronmental Research 16(4):5269-5285.
|