ÇANKIRI KARATEKİN ÜNİVERSİTESİ - Bologna Bilgi Sistemi


  • Ders Tanımı
  • Ders Adı Kodu Yarıyıl Teori+Uygulama (Saat) Havuz Statü AKTS
    Matematik I MAT161 GÜZ 3+2 Fak./ Üni. BD 5
    Öğrenme Çıktıları
    1-Sayı kümelerini ve özelliklerini tanımlar
    2-Cebirsel denklemleri ve eşitsizlikleri hesaplar
    3-Fonksiyonların özelliklerini açıklar
    4-Lineer denklem sistemlerinin çözüm kümelerini hesaplar
    5-Türev kavramını tanımlar
  • AKTS / İŞ YÜKÜ TABLOSU
  • EtkinlikKatkı Yüzdesi

    (100)

    SayısıSüresi (Saat)Toplam İş Yükü (Saat)
    Ders Süresi (Hafta x Ders Saati)14570
    Sınıf Dışı Ders Çalışma Süresi (Ön çalışma, pekiştirme)14342
    Ödevler0000
    Kısa Süreli Sınavlar (sınav + hazırlık) 0000
    Ara Sınavlar (sınav + hazırlık)4011515
    Proje0000
    Laboratuar 0000
    Yarıyıl Sonu Sınavı (sınav + hazırlık) 6011515
    Diğer 0000
    Toplam İş Yükü(Saat)   142
    Toplam İş Yükü(Saat)/ 30 (s)     4,73 ---- (5)
    Dersin AKTS Kredisi   5
  • Ders Akışı
  • Hafta Konular Ön Hazırlık
    1 Sayı kümeleri ve özellikleri, basit eşitsizlikler, mutlak değer K1-Bölüm 1.6 & 1.7 & 2.4
    2 Üslü ve köklü sayılar, çarpanlara ayırma ve rasyonel ifadeler K1-Bölüm 1.8 & 1.9
    3 Denklemler ve denklem sistemleri K1-Bölüm 2.1 & 2.2 & 2.3
    4 Eşitsizlikler ve eşitsizlik sistemleri K1-Bölüm 2.4 & 2.5 & 2.6
    5 Bağıntı, fonksiyon ve özellikleri K1-Bölüm 4.1 & 4.2
    6 Polinom ve rasyonel fonksiyonlar K1-Bölüm 3.1 & 3.2 & 3.3 & 3.4 & 3.5
    7 Üstel, logaritmik ve trigonometik fonksiyonlar K1-Bölüm 6.1 & 6.2 & 2.4
    8 Matris K1-Bölüm 8.1
    9 Determinant K1-Bölüm 8.4
    10 Lineer denklem sistemleri ve çözümleri K2-Bölüm 1.1
    11 Fonksiyonlarda limit ve süreklilik K1-Bölüm 9.1
    12 Türev tanımı ve türev alma kuralları, bileşke fonksiyonun türevi, yüksek mertebeden türevler K1-Bölüm 10.1 & 10.2 & 10.8
    13 Üstel ve logaritmik fonksiyonların türevleri, logaritmik türev alma, kapalı fonksiyonların türevleri K1-Bölüm 10.4 & 10.5 & 10..7
    14 Parametrik fonksiyonların türevleri, diferensiyel kavramı, türevin geometrik ve fiziksel anlamları K1-Bölüm 10.6 & 10.9
    Ön Koşul -
    Ders Dili Türkçe
    Dersin Sorumlusu Dr. Gül UĞUR KAYMANLI
    Dersi Verenler -
    Ders Yardımcıları Dr. Hanie VARLI, Dr. Emel BOLAT YEŞİLOVA, Dr. Harun BALDEMİR
    Kaynaklar K1 - Balcı, M. (2012). Temel Matematik I, Palme Yayınları.
    Yardımcı Kitap YK1 - Çelik, B., Cangül, İ.N., Çelik, N., Bizim, O., Öztürk, M. (2010). Temel Matematik, Dora Basım-Yayın.
    Dersin Amacı Öğrencinin kendi disiplini ile ilgili matematiksel problemlerin çözümü için gerekli olan temel kavram ve konuların öğretilmesi
    Dersin İçeriği Sayı kümeleri ve özellikleri, basit eşitsizlikler, mutlak değer, Üslü ve köklü sayılar, çarpanlara ayırma ve rasyonel ifadeler, Denklemler ve denklem sistemleri, Eşitsizlikler ve eşitsizlik sistemleri, Bağıntı, fonksiyon ve özellikleri, Polinom ve rasyonel fonksiyonlar, Üstel, logaritmik ve trigonometik fonksiyonlar, Matris ve determinant, Lineer denklem sistemleri ve çözümleri, Fonksiyonlarda limit ve süreklilik, Türev tanımı ve türev alma kuralları, bileşke fonksiyonun türevi, yüksek mertebeden türevler, Üstel ve logaritmik fonksiyonların türevleri, logaritmik türev alma, kapalı fonksiyonların türevleri, Parametrik fonksiyonların türevleri, diferensiyel kavramı, türevin geometrik ve fiziksel anlamları.
  • Program Yeterlilik Çıktıları
  • Program Yeterlilik Çıktıları Katkı Düzeyi
    1 Matematiğin temel alanlarındaki teorik ve uygulamalı bilgilere ileri düzeyde hakim olma 3
    2 Soyut düşünebilme yeteneğine sahip olma 4
    3 Edindiği matematiksel bilgiyi, karşılaştığı problemi tanımlama, analiz etme ve çözüm aşamalarına ayırma sürecinde kullanabilme 3
    4 Matematiksel kazanımlarını farklı disiplinlerle ilişkilendirme ve gerçek yaşamda uygulayabilme -
    5 Matematik bilgisi gerektiren bir problem veya projede bağımsız çalışma yeterliliğine sahip olma -
    6 Ulusal veya uluslar arası ekiplerde uyumlu ve etkin bir şekilde çalışabilme ve sorumluluk alabilme -
    7 Matematiğin farklı alanlarından edindiği bilgileri eleştirel bir yaklaşımla değerlendirebilme ve ilerletme becerilerine sahip olma -
    8 Karşılaştığı problemin ne tür bilgi öğrenimi gerektirdiğini belirleyebilme ve bu bilgiyi öğrenme sürecini yönlendirebilme -
    9 Bilimsel birikimin zaman içinde geliştiğini gözlemleyerek, sürekli öğrenmenin bir ihtiyaç olduğunu içselleştirme -
    10 Matematik ile ilgili konularda düşüncelerini, problemlere ilişkin çözüm önerilerini, uzman olan veya olmayan paydaşlara yazılı ve sözlü olarak aktarabilme -
    11 Toplumsal sorumluluk bilinci ile proje üretebilme ve etkinlikler düzenleyebilme -
    12 Bir yabancı dili  en az Avrupa Dil Portföyü B1 Genel Düzeyi`nde kullanarak matematik alanındaki yayınları takip edebilme ve meslektaşları ile bilgi alışverişinde bulunabilme -
    13 Matematiksel problemlerin çözümü, fikir ve sonuçların aktarılması için gerekli bilgisayar yazılımlarını (en az Avrupa Bilgisayar Kullanma Lisansı İleri Düzeyinde), bilişim ve iletişim teknolojilerini kullanabilme -
    14 Toplumsal, bilimsel, kültürel ve etik değerlere uygun hareket etme bilincine sahip olma -
    Çankırı Karatekin Üniversitesi  Bilgi İşlem Daire Başkanlığı  @   2017 - Webmaster