CANKIRI KARATEKIN UNIVERSITY Bologna Information System


  • Course Information
  • Course Title Code Semester Laboratory+Practice (Hour) Pool Type ECTS
    Functional Analysis MAT404 FALL-SPRING 3+0 E 6
    Learning Outcomes
    1- Comments inner product and the concept of orthogonality.
    2-Calculates adjoint of an operator.
    3-Defines Hilbert spaces, banach spaces and compact operators on hilbert spaces
    4-Summarizes spectral theory of compact operators on hilbert space
    Prerequisites -
    Language of Instruction Turkish
    Responsible Asistant. Prof. Dr. Müfit ŞAN
    Instructors -
    Assistants -
    Resources R1) Soykan, Y., & Uzaylar, N. (2008). Fonksiyonel analiz. Nobel Yayın Dağıtım. R2) Musayev, B., & Alp, M. (2000). Fonksiyonel analiz. Kütahya: Balcı Yayınları.
    Supplementary Book R3) ?uhubi, E. S. (2001). Fonksiyonel analiz. İstanbul Teknik Üniversitesi Vakfı.
    Goals At the end of this course, it is aimed that the students can evaluate topology of the courses Analysis I,II,III ,IV. Furthermore, it is aimed that the students learn and can apply the concepts of metric, norm and Hilbert space.
    Content Hilbert spaces, Compact Operators, Adjoint, Self-adjoint operators, Volterra Operators
    Çankırı Karatekin Üniversitesi  Bilgi İşlem Daire Başkanlığı  @   2017 - Webmaster