Ön Koşul
|
-
|
Ders Dili
|
Türkçe
|
Dersin Sorumlusu
|
Dr. Öğr. Üyesi Celalettin KAYA
|
Dersi Verenler
|
-
|
Ders Yardımcıları
|
-
|
Kaynaklar
|
K1- Rosen, Kenneth H. (2018) Discrete Mathematics and Its Applications (Eight Edition). McGraw-Hill Education, New York. [Çevirisi: Akın, Ö. ve Özbayoğlu, M. (Çeviri Editörleri) (2020). Ayrık Matematik ve Uygulamaları (Yedinci Baskıdan Çeviri). Palme Yayınevi, Ankara.]
K2- Johnsonbaugh, R. (2009). Discrete Mathematics (Seventh Edition). Pearson, New Jersey. [Çevirisi: Gürçay, H. (2019). Kesikli Matematik (Yedinci Baskıdan Çeviri). Nobel Akademik Yayıncılık, Ankara.]
|
Yardımcı Kitap
|
YK- West, D. (2017). Introduction to Graph Theory (Classic Version) (2nd Ed.). Pearson, London.
|
Dersin Amacı
|
Graf teorideki temel kavramların, algoritmaların ve problem çözme tekniklerinin öğretilmesidir.
|
Dersin İçeriği
|
Graflar ve ağaçlar ile ilgili temel kavramlar, bu kavramların uygulamaları ve algoritmalar.
|
|
Program Yeterlilik Çıktıları |
Katkı Düzeyi |
1
|
Matematiğin temel alanlarındaki teorik ve uygulamalı bilgilere ileri düzeyde hakim olma
|
-
|
2
|
Soyut düşünebilme yeteneğine sahip olma
|
3
|
3
|
Edindiği matematiksel bilgiyi, karşılaştığı problemi tanımlama, analiz etme ve çözüm aşamalarına ayırma sürecinde kullanabilme
|
3
|
4
|
Matematiksel kazanımlarını farklı disiplinlerle ilişkilendirme ve gerçek yaşamda uygulayabilme
|
2
|
5
|
Matematik bilgisi gerektiren bir problem veya projede bağımsız çalışma yeterliliğine sahip olma
|
2
|
6
|
Ulusal veya uluslar arası ekiplerde uyumlu ve etkin bir şekilde çalışabilme ve sorumluluk alabilme
|
-
|
7
|
Matematiğin farklı alanlarından edindiği bilgileri eleştirel bir yaklaşımla değerlendirebilme ve ilerletme becerilerine sahip olma
|
-
|
8
|
Karşılaştığı problemin ne tür bilgi öğrenimi gerektirdiğini belirleyebilme ve bu bilgiyi öğrenme sürecini yönlendirebilme
|
-
|
9
|
Bilimsel birikimin zaman içinde geliştiğini gözlemleyerek, sürekli öğrenmenin bir ihtiyaç olduğunu içselleştirme
|
-
|
10
|
Matematik ile ilgili konularda düşüncelerini, problemlere ilişkin çözüm önerilerini, uzman olan veya olmayan paydaşlara yazılı ve sözlü olarak aktarabilme
|
-
|
11
|
Toplumsal sorumluluk bilinci ile proje üretebilme ve etkinlikler düzenleyebilme
|
-
|
12
|
Bir yabancı dili en az Avrupa Dil Portföyü B1 Genel Düzeyi`nde kullanarak matematik alanındaki yayınları takip edebilme ve meslektaşları ile bilgi alışverişinde bulunabilme
|
-
|
13
|
Matematiksel problemlerin çözümü, fikir ve sonuçların aktarılması için gerekli bilgisayar yazılımlarını (en az Avrupa Bilgisayar Kullanma Lisansı İleri Düzeyinde), bilişim ve iletişim teknolojilerini kullanabilme
|
-
|
14
|
Toplumsal, bilimsel, kültürel ve etik değerlere uygun hareket etme bilincine sahip olma
|
-
|