ÇANKIRI KARATEKİN ÜNİVERSİTESİ - Bologna Bilgi Sistemi


  • Ders Akışı
  • Hafta Konular Ön Hazırlık
    1 Kümeler cebiri, Dönüşümler, Bazı cebirsel yapılar, Pertümasyon, polinomlar K1-Bölüm 1
    2 Tanımlar ve bazı temel kavramlar, Matrislerin eşitliği, Matrislerin toplamı, Bir skalerle matrisin çarpımı, Matris çarpımı, Matris çarpımına ait bir uygulama, Bloklara ayırma ile matrislerin çarpımı K1-Bölüm 2
    3 Matrislerin çarpımı, Bir matrisin transpozu, Bazı özel matrisler, Özel matrisleri içeren bazı bağıntılar, Bir kare matrisin izi ve özellikleri, Ters matrisler, Sıfır bölen matrisler K1-Bölüm 2
    4 Elementer işlemler, Elementer matrisler K1-Bölüm 3
    5 Elementer satır işlemleri ile ters çevrilebilir bir matrisin tersinin bulunması, Denk matrisler ve uygulamalar K1-Bölüm 3
    6 Determinantların elementer özellikleri, Minörler ile determinantların hesaplanması, Permütasyonlar ve determinantlar, Bir çarpımın determinantı K1-Bölüm 4
    7 Sarrus kuralı, Bir kare matrisin adjointi, Bloklara ayırma yöntemi ile ters matrisin bulunması, Permanentler ve özellikleri K1-Bölüm 4
    8 Tanımlar, Lineer denklem sistemleri ve matrisler, Bir matrisin rankı K1-Bölüm 5
    9 Elementer satır işlemleri ile bir matrisin rankının bulunması, Lineer denklem sistemlerinin çözümünün varlığı ile ilgili kriterler, Lineer denklem sistemlerinin çözümü, Homojen denklem sistemlerinin çözümü K1-Bölüm 5
    10 Vektör uzaylarının tanımı ve bazı elementer özellikleri, Alt vektör uzayları, Lineer bağımlılık ve Lineer bağımsızlık, Baz ve boyut K1-Bölüm 6
    11 Bir baza göre bir vektörün koordinatları, Satır ve sütun rankı, Bir kare matrisin rankı ve determinantı arasındaki bağıntı K1-Bölüm 6
    12 İç çarpım, Vektör normları, İki vektör arasındaki uzaklık, İki vektör arasındaki açı, Ortogonal vektörler K1-Bölüm 7
    13 Karakteristik polinom, Özdeğer ve özvektör, Özuzay, Cayley-Hamilton Teoremi yardımıyla bir kare matrisin tersinin bulunması, Bir kare matrisin özdeğerlerinin matris normu yardımıyla tahmin edilmesi, Singüler değerler K1-Bölüm 9
    14 Benzer matrisler, Köşegenleştirme, Köşegenleştirmenin bazı uygulamaları, Simetrik matrislerin köşegenleştirilmesi K1-Bölüm 10
    Çankırı Karatekin Üniversitesi  Bilgi İşlem Daire Başkanlığı  @   2017 - Webmaster