|
Ön Koşul
|
-
|
|
Ders Dili
|
Türkçe
|
|
Dersin Sorumlusu
|
Yrd. Doç. Dr. Faruk KARAASLAN
|
|
Dersi Verenler
|
-
|
|
Ders Yardımcıları
|
İlgili anabilim dalının öğretim üyeleri
|
|
Kaynaklar
|
1. J. M. Howie, An Introduction to Semigroup Theory, Academic Press Inc. London 1976.
2. Hofmann, Karl Heinrich, and Paul Stallings Mostert. Elements of compact semigroups. Merrill Publishing Company, 1966.
|
|
Yardımcı Kitap
|
-
|
|
Dersin Amacı
|
Yarı grup teorisi hakkında bilgi sahibi olmak
|
|
Dersin İçeriği
|
Yarı- gruplar, latisler, idealler, grupların birleşimi, ters yarı-gruplar
|
|
Program Yeterlilik Çıktıları |
Katkı Düzeyi |
|
1
|
Matematik alanında edindiği bilgileri uzmanlık düzeyinde geliştirir ve derinleştirir.
|
5
|
|
2
|
Matematik alanında edindiği uzmanlık düzeyindeki kuramsal ve uygulamalı bilgiyi kullanır.
|
5
|
|
3
|
Matematik alanında edindiği bilgileri diğer alanlarla ilişkilendirerek disiplinler arası çalışmalar gerçekleştirir.
|
2
|
|
4
|
Matematik alanında karşılaştığı problemleri edindiği araştırma yöntemlerini kullanarak çözümler.
|
4
|
|
5
|
Matematik alanında uzmanlık gerektiren bir çalışmayı bağımsız olarak yürütür.
|
2
|
|
6
|
Uygulamalarda karşılaşabileceği sorunların çözümü için farklı yaklaşımlar geliştirir ve sorumluluk alarak çözüm üretir.
|
4
|
|
7
|
Edindiği uzmanlık düzeyindeki bilgi ve becerileri eleştirel bir yaklaşımla değerlendirir ve öğrenme sürecine yön verir.
|
4
|
|
8
|
Matematik alanındaki güncel araştırmaları ve kendi çalışmalarını alanındaki ve alan dışındaki gruplara, yazılı, sözlü ve görsel olarak aktarır.
|
4
|
|
9
|
Matematik alanı ile ilgili bilgisayar yazılımı ve bilişim teknolojilerini ileri düzeyde kullanır.
|
-
|
|
10
|
Matematik alanı ile ilgili verilerin toplanması, yorumlanması, uygulanması ve duyurulması aşamalarında toplumsal, bilimsel, kültürel ve etik değerleri gözetir ve denetler.
|
5
|